Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Inherit Metab Dis ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38706107

RESUMEN

Sphingolipids are ubiquitous lipids, present in the membranes of all cell types, the stratum corneum and the circulating lipoproteins. Autosomal recessive as well as dominant diseases due to disturbed sphingolipid biosynthesis have been identified, including defects in the synthesis of ceramides, sphingomyelins and glycosphingolipids. In many instances, these gene variants result in the loss of catalytic function of the mutated enzymes. Additional gene defects implicate the subcellular localization of the sphingolipid-synthesizing enzyme, the regulation of its activity, or even the function of a sphingolipid-transporter protein. The resulting metabolic alterations lead to two major, non-exclusive types of clinical manifestations: a neurological disease, more or less rapidly progressive, associated or not with intellectual disability, and an ichthyotic-type skin disorder. These phenotypes highlight the critical importance of sphingolipids in brain and skin development and homeostasis. The present article reviews the clinical symptoms, genetic and biochemical alterations, pathophysiological mechanisms and therapeutic options of this relatively novel group of metabolic diseases.

2.
Mol Nutr Food Res ; 68(1): e2300491, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37888831

RESUMEN

SCOPE: Non-alcoholic fatty liver disease (NAFLD) is a sexually dimorphic disease influenced by dietary factors. Here, the metabolic and hepatic effects of dietary amino acid (AA) source is assessed in Western diet (WD)-induced NAFLD in male and female mice. METHODS AND RESULTS: The AA source is either casein or a free AA mixture mimicking the composition of casein. As expected, males fed a casein-based WD display glucose intolerance, fasting hyperglycemia, and insulin-resistance and develop NAFLD associated with changes in hepatic gene expression and microbiota dysbiosis. In contrast, males fed the AA-based WD show no steatosis, a similar gene expression profile as males fed a control diet, and a distinct microbiota composition compared to males fed a casein-based WD. Females are protected against WD-induced liver damage, hepatic gene expression, and gut microbiota changes regardless of the AA source. CONCLUSIONS: Free dietary AA intake prevents the unhealthy metabolic outcomes of a WD preferentially in male mice.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Femenino , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Caseínas/farmacología , Hígado/metabolismo , Dieta Occidental/efectos adversos , Aminoácidos/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa
3.
Cancers (Basel) ; 14(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36230781

RESUMEN

Sphingolipids play a key structural role in cellular membranes and/or act as signaling molecules. Inherited defects of their catabolism lead to lysosomal storage diseases called sphingolipidoses. Although progress has been made toward a better understanding of their pathophysiology, several issues still remain unsolved. In particular, whether lysosphingolipids, the deacylated form of sphingolipids, both of which accumulate in these diseases, are simple biomarkers or play an instrumental role is unclear. In the meanwhile, evidence has been provided for a high risk of developing malignancies in patients affected with Gaucher disease, the most common sphingolipidosis. This article aims at analyzing the potential involvement of lysosphingolipids in cancer. Knowledge about lysosphingolipids in the context of lysosomal storage diseases is summarized. Available data on the nature and prevalence of cancers in patients affected with sphingolipidoses are also reviewed. Then, studies investigating the biological effects of lysosphingolipids toward pro or antitumor pathways are discussed. Finally, original findings exploring the role of glucosylsphingosine in the development of melanoma are presented. While this lysosphingolipid may behave like a protumorigenic agent, further investigations in appropriate models are needed to elucidate the role of these peculiar lipids, not only in sphingolipidoses but also in malignant diseases in general.

6.
Cancers (Basel) ; 12(2)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085512

RESUMEN

The roles of ceramide and its catabolites, i.e., sphingosine and sphingosine 1-phosphate, in the development of malignancies and the response to anticancer regimens have been extensively described. Moreover, an abundant literature points to the effects of glucosylceramide synthase, the mammalian enzyme that converts ceramide to ß-glucosylceramide, in protecting tumor cells from chemotherapy. Much less is known about the contribution of ß-glucosylceramide and its breakdown products in cancer progression. In this chapter, we first review published and personal clinical observations that report on the increased risk of developing cancers in patients affected with Gaucher disease, an inborn disorder characterized by defective lysosomal degradation of ß-glucosylceramide. The previously described mechanistic links between lysosomal ß-glucosylceramidase, ß-glucosylceramide and/or ß-glucosylphingosine, and various hallmarks of cancer are reviewed. We further show that melanoma tumor growth is facilitated in a Gaucher disease mouse model. Finally, the potential roles of the ß-glucosylceramidase protein and its lipidic substrates and/or downstream products are discussed.

7.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661765

RESUMEN

We report the case of a boy who was diagnosed with mucopolysaccharidosis (MPS) VII at two weeks of age. He harbored three missense ß-glucuronidase (GUSB) variations in exon 3: two novel, c.422A>C and c.424C>T, inherited from his mother, and the rather common c.526C>T, inherited from his father. Expression of these variations in transfected HEK293T cells demonstrated that the double mutation c.422A>C;424C>T reduces ß-glucuronidase enzyme activity. Enzyme replacement therapy (ERT), using UX003 (vestronidase alfa), was started at four months of age, followed by a hematopoietic stem cell allograft transplantation (HSCT) at 13 months of age. ERT was well tolerated and attenuated visceromegaly and skin infiltration. After a severe skin and gut graft-versus-host disease, ERT was stopped six months after HSCT. The last follow-up examination (at the age of four years) revealed a normal psychomotor development, stabilized growth curve, no hepatosplenomegaly, and no other organ involvement. Intriguingly, enzyme activity had normalized in leukocytes but remained low in plasma. This case report illustrates: (i) The need for an early diagnosis of MPS, and (ii) the possible benefit of a very early enzymatic and/or cellular therapy in this rare form of lysosomal storage disease.


Asunto(s)
Terapia de Reemplazo Enzimático , Glucuronidasa/genética , Trasplante de Células Madre Hematopoyéticas , Mucopolisacaridosis VII/genética , Mucopolisacaridosis VII/terapia , Terapia Combinada , Glucuronidasa/sangre , Glucuronidasa/uso terapéutico , Glucuronidasa/orina , Células HEK293 , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Hepatomegalia/tratamiento farmacológico , Humanos , Recién Nacido , Leucocitos/enzimología , Leucocitos/metabolismo , Masculino , Mucopolisacaridosis VII/sangre , Mucopolisacaridosis VII/diagnóstico , Mutación , Esplenomegalia/tratamiento farmacológico
8.
JIMD Rep ; 46(1): 11-15, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31240149

RESUMEN

We describe the case of a young woman, from a consanguineous family, affected by adult Refsum disease (ARD, OMIM#266500). ARD is a rare peroxisomal autosomal recessive disease due to deficient alpha-oxidation of phytanic acid (PA), a branched-chain fatty acid. The accumulation of PA in organs is thought to be responsible for disease symptoms. The patient presented only bilateral shortening of metatarsals and has been treated with a low-PA diet. She is homoallelic for the c.135-2A > G mutation of PHYH, and she married her first cousin carrying the same mutation. She was pregnant seven times and had two homozygous girls. Due to a potential exacerbation of the disease during the third trimester of pregnancy, her weight and plasma PA levels were monitored. No specific events were noticed for the mother during the pregnancies and postpartum periods. This case also raised the question of potential exposure to PA (and its subsequent toxicity) of a homozygous fetus in a homozygous mother. Despite modestly elevated plasma concentrations of PA at birth (<30 µmol/L), the two affected girls did not present any specific sign of ARD and have so far developed normally. As only a few determinations of plasma PA levels in the mother could be performed during pregnancies, showing mild elevations (<350 µmol/L), it remains difficult to conclude as to a possible transplacental crossing of PA.

9.
Clin Chim Acta ; 495: 457-466, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31128082

RESUMEN

Ceramides are membrane lipids implicated in the regulation of numerous biological functions. Recent evidence suggests that specific subsets of molecular species of ceramide may play distinct physiological roles. The importance of this family of molecules in vertebrates is witnessed by the deleterious consequences of genetic alterations in ceramide metabolism. This brief review summarizes the clinical presentation of human disorders due to the deficiency of enzymes involved either in the biosynthesis or the degradation of ceramides. Information on the possible underlying pathophysiological mechanisms is also provided, based on knowledge gathered from animal models of these inherited rare conditions. When appropriate, tools for chemical and molecular diagnosis of these disorders and therapeutic options are also presented.


Asunto(s)
Ceramidas/metabolismo , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Animales , Ceramidas/biosíntesis , Humanos
10.
J Inherit Metab Dis ; 40(3): 377-383, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28324240

RESUMEN

Maple syrup urine disease (MSUD), an inborn error of amino acids catabolism is characterized by accumulation of branched chain amino acids (BCAAs) leucine, isoleucine, valine and their corresponding alpha-ketoacids. Impact on the cognitive development has been reported historically, with developmental delays of varying degree. Currently, earlier diagnosis and improved management allow a better neurodevelopment, without requirement of special education. However, specific impairments can be observed, and so far, results of detailed neurocognitive assessments are not available. The aim of this study was to analyse neurocognitive profiles of French MSUD patients. This was a multicentre retrospective study on MSUD patients who underwent neurocognitive evaluation at primary school age. Twenty-one patients with classical neonatal onset MSUD were included. The patients' mean age at the time of evaluation was 8.7 years. The mean intellectual quotient (IQ) score was in the normal range (95.1 ± 12.6). In a subset of eight patients, a consistent developmental pattern of higher verbal than performance IQ was observed (mean of the difference 25.7 ± 8.7, p < 0.0001). No correlation could be established between this pattern and long-term metabolic balance (BCAA blood levels), or severity of acute metabolic imbalances, or leucine blood levels at diagnosis and time to toxin removal procedure. These data show that some MSUD patients may exhibit an abnormal neurocognitive profile with higher verbal than performance abilities. This might suggest an executive dysfunction disorder that would need to be further investigated by specialized testing. This pattern is important to detect in MSUD, as appropriate neuropsychological treatment strategies should be proposed.


Asunto(s)
Cognición/fisiología , Enfermedad de la Orina de Jarabe de Arce/fisiopatología , Aminoácidos de Cadena Ramificada/sangre , Niño , Diagnóstico Precoz , Femenino , Humanos , Lactante , Recién Nacido , Isoleucina/sangre , Leucina/sangre , Masculino , Enfermedad de la Orina de Jarabe de Arce/sangre , Estudios Retrospectivos , Instituciones Académicas , Valina/sangre
11.
Mol Cell ; 62(6): 890-902, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27264869

RESUMEN

The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Serina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proliferación Celular , Cromatina/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Glicina/metabolismo , Células HCT116 , Homeostasis , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Desnudos , Mutación , Oxidación-Reducción , Estrés Oxidativo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/genética , Interferencia de ARN , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Factores de Tiempo , Transcripción Genética , Transfección , Carga Tumoral , Proteína p53 Supresora de Tumor/genética , Proteínas de Unión a Hormona Tiroide
12.
Presse Med ; 45(3): 302-12, 2016 Mar.
Artículo en Francés | MEDLINE | ID: mdl-26899150

RESUMEN

Peroxisomes are small intracellular organelles that catalyse key metabolic reactions such as the beta-oxidation of some straight-chain or branched-chain fatty acids and the alpha-oxidation of phytanic acid. These enzyme reactions produce hydrogen peroxide, which is subsequently neutralized by the peroxisomal catalase. Peroxisomes also metabolize glyoxylate to glycine, and catalyze the first steps of plasmalogen biosynthesis. There are more than a dozen inherited peroxisomal disorders in humans. These metabolic diseases are due to monogenic defects that affect either a single function (such as enzyme or a transporter) or more than two distinct functions because of the impairment of several aspects of peroxisome biogenesis. With the notable exception of X-linked adrenoleucodystrophy, these inborn disorders are transmitted as autosomal recessive traits. Their clinical presentation can be very heterogeneous, and include neonatal, infantile or adult forms. The present review describes the symptomatology of these genetic diseases, the underlying genetic and biochemical alterations, and summarizes their diagnostic approach.


Asunto(s)
Trastorno Peroxisomal/genética , Adolescente , Adulto , Edad de Inicio , Trasplante de Médula Ósea , Encéfalo/patología , Catarata/congénito , Catarata/genética , Niño , Árboles de Decisión , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/efectos adversos , Ácidos Grasos/metabolismo , Femenino , Genes Recesivos , Humanos , Peróxido de Hidrógeno/metabolismo , Lactante , Recién Nacido , Masculino , Miocardio/patología , Biogénesis de Organelos , Trastorno Peroxisomal/diagnóstico , Trastorno Peroxisomal/epidemiología , Trastorno Peroxisomal/patología , Trastorno Peroxisomal/terapia , Peroxisomas/enzimología , Peroxisomas/fisiología , Fenotipo , Ácido Fitánico/metabolismo
13.
Orphanet J Rare Dis ; 10: 31, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25885655

RESUMEN

BACKGROUND: Multiple sulfatase deficiency is a rare inherited metabolic disorder caused by mutations in the SUMF1 gene. The disease remains poorly known, often leading to a late diagnosis. This study aimed to provide improved knowledge of the disease, through complete clinical, biochemical, and molecular descriptions of a cohort of unrelated patients. The main objective was to identify prognostic markers, both phenotypic and genotypic, to accelerate the diagnosis and improve patient care. METHODS: The phenotypes of ten unrelated patients were fully documented at the clinical and biochemical levels. The long-term follow-up of each patient allowed correlations of the phenotypes to the disease outcomes. Each patient's molecular defects were also identified. Site-directed mutagenesis was used to individually express the mutants and assess their stability. Characterisation of the protein mutants was completed by in silico analyses based on sequence comparisons and structural models. RESULTS: The most severe cases were characterised by the presence of non-neurological symptoms as well as the occurrence of psychomotor regression before 2 years of age. Nine novel SUMF1 mutations were identified. Clinically severe forms were often associated with SUMF1 mutations that strongly affected the protein stability and/or catalytic function as predicted from in silico and western blot analyses. CONCLUSIONS: This detailed clinical description and follow-up of a cohort of patients, together with the molecular characterisation of their underlying defects, contribute to improved knowledge of multiple sulfatase deficiency. Predictors of a bad prognosis were the presence of several non-neurological symptoms and the onset of psychomotor regression before 2 years of age. No strict correlation existed between in vitro residual sulfatase activity and disease severity. Genotype-phenotype correlations related to previously reported mutants were strengthened. These and previous observations allow not only improved prediction of the disease outcome but also provision of appropriate care for patients, in the expectation of specific treatment development.


Asunto(s)
Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Enfermedad por Deficiencia de Múltiples Sulfatasas/metabolismo , Sulfatasas/metabolismo , Niño , Preescolar , Femenino , Regulación Enzimológica de la Expresión Génica , Genotipo , Células HEK293 , Humanos , Lactante , Recién Nacido , Masculino , Mutagénesis Sitio-Dirigida , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Fenotipo , Conformación Proteica , Sulfatasas/genética
14.
Biochim Biophys Acta ; 1851(8): 1040-51, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25660725

RESUMEN

Sphingolipids comprise a wide variety of molecules containing a sphingoid long-chain base that can be N-acylated. These lipids are particularly abundant in the central nervous system, being membrane components of neurons as well as non-neuronal cells. Direct evidence that these brain lipids play critical functions in brain physiology is illustrated by the dramatic consequences of genetic disturbances of their metabolism. Inherited defects of both synthesis and catabolism of sphingolipids are now identified in humans. These monogenic disorders are due to mutations in the genes encoding for the enzymes that catalyze either the formation or degradation of simple sphingolipids such as ceramides, or complex sphingolipids like glycolipids. They cause varying degrees of central nervous system dysfunction, quite similarly to the neurological disorders induced in mice by gene disruption of the corresponding enzymes. Herein, the enzyme deficiencies and metabolic alterations that underlie these diseases are reviewed. Their possible pathophysiological mechanisms and the functions played by sphingolipids one can deduce from these conditions are discussed. This article is part of a Special Issue entitled Brain Lipids.


Asunto(s)
Glicósido Hidrolasas/deficiencia , Trastornos del Metabolismo de los Lípidos/metabolismo , Metabolismo de los Lípidos/genética , Enfermedades del Sistema Nervioso/metabolismo , Esfingolípidos/metabolismo , Animales , Expresión Génica , Glicósido Hidrolasas/genética , Humanos , Trastornos del Metabolismo de los Lípidos/genética , Trastornos del Metabolismo de los Lípidos/patología , Ratones , Mutación , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Ratas , Esfingolípidos/química
15.
J Inherit Metab Dis ; 38(1): 65-76, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25141825

RESUMEN

Monogenic defects of sphingolipid biosynthesis have been recently identified in human patients. These enzyme deficiencies affect the synthesis of sphingolipid precursors, ceramides or complex glycosphingolipids. They are transmitted as autosomal recessive or dominant traits, and their resulting phenotypes often replicate the abnormalities seen in murine models deficient for the corresponding enzymes. In quite good agreement with the known critical roles of sphingolipids in cells from the nervous system and the epidermis, these genetic defects clinically manifest as neurological disorders, including paraplegia, epilepsy or peripheral neuropathies, or present with ichthyosis. The present review summarizes the genetic alterations, biochemical changes and clinical symptoms of this new group of inherited metabolic disorders. Hypotheses regarding the molecular pathophysiology and potential treatments of these diseases are also discussed.


Asunto(s)
Glicoesfingolípidos/biosíntesis , Errores Innatos del Metabolismo Lipídico/genética , Esfingolípidos/biosíntesis , Animales , Ataxia/genética , Modelos Animales de Enfermedad , Epilepsia/genética , Humanos , Ratones , Mutación , Paraplejía/genética , Enfermedades del Sistema Nervioso Periférico/genética , Fenotipo , Retinitis/genética
16.
Mol Cell Proteomics ; 13(12): 3421-34, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25205225

RESUMEN

Obstructive nephropathy is a frequently encountered situation in newborns. In previous studies, the urinary peptidome has been analyzed for the identification of clinically useful biomarkers of obstructive nephropathy. However, the urinary proteome has not been explored yet and should allow additional insight into the pathophysiology of the disease. We have analyzed the urinary proteome of newborns (n = 5/group) with obstructive nephropathy using label free quantitative nanoLC-MS/MS allowing the identification and quantification of 970 urinary proteins. We next focused on proteins exclusively regulated in severe obstructive nephropathy and identified Arginase 1 as a potential candidate molecule involved in the development of obstructive nephropathy, located at the crossroad of pro- and antifibrotic pathways. The reduced urinary abundance of Arginase 1 in obstructive nephropathy was verified in independent clinical samples using both Western blot and MRM analysis. These data were confirmed in situ in kidneys obtained from a mouse obstructive nephropathy model. In addition, we also observed increased expression of Arginase 2 and increased total arginase activity in obstructed mouse kidneys. mRNA expression analysis of the related arginase pathways indicated that the pro-fibrotic arginase-related pathway is activated during obstructive nephropathy. Taken together we have identified a new actor in the development of obstructive nephropathy in newborns using quantitative urinary proteomics and shown its involvement in an in vivo model of disease. The present study demonstrates the relevance of such a quantitative urinary proteomics approach with clinical samples for a better understanding of the pathophysiology and for the discovery of potential therapeutic targets.


Asunto(s)
Arginasa/orina , Hidronefrosis/orina , Riñón/metabolismo , Proteoma/metabolismo , Insuficiencia Renal/orina , Animales , Arginasa/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Hidronefrosis/congénito , Hidronefrosis/patología , Lactante , Recién Nacido , Riñón/patología , Masculino , Ratones Endogámicos C57BL , Proteoma/genética , Proteómica/métodos , Insuficiencia Renal/congénito , Insuficiencia Renal/patología , Transducción de Señal
17.
Handb Exp Pharmacol ; (215): 127-52, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23579453

RESUMEN

A better understanding of the functions sphingolipids play in living organisms can be achieved by analyzing the biochemical and physiological changes that result from genetic alterations of sphingolipid metabolism. This review summarizes the current knowledge gained from studies both on human patients and mutant animals (mice, cats, dogs, and cattle) with genetic disorders of sphingolipid metabolism. Genetic alterations affecting the biosynthesis, transport, or degradation of simple sphingolipids are discussed.


Asunto(s)
Esfingolípidos/metabolismo , Aldehído-Liasas/fisiología , Animales , Transporte Biológico , Proteínas Portadoras/genética , Ceramidasas/genética , Ceramidasas/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/genética , Proteína Niemann-Pick C1 , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Serina-Treonina Quinasas/genética , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/fisiología
19.
J Inherit Metab Dis ; 34(2): 515-22, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21161685

RESUMEN

Danon disease is an X-linked lysosomal disorder, characterized by hypertrophic cardiomyopathy, skeletal myopathy and mental retardation. We report a family with a novel mutation, in which the mother and her three sons were affected with various clinical presentations. A massive hypertrophy of the left ventricle was the predominant feature in the three male patients, with different degrees of severity of cardiac symptoms, from isolated palpitations to cardiac failure and sudden death. Muscle pain and weakness were also variable, but constantly associated with increased plasma CK levels. Finally, the male patients had variable degree of a mental retardation. The mother had an attenuated phenotype, limited to a mild hypertrophic cardiomyopathy with premature ventricular contractions diagnosed during her 40's. Microscopy examination of skeletal muscle biopsy, performed in the youngest patient, demonstrated atrophic myofibers with intracytoplasmic vacuoles suggesting lysosomal glycogen storage disease. Immunohistochemistry analyses in muscle specimen showed no detectable Lysosomal-Associated Membrane Protein-2 (LAMP-2), in keeping with the diagnosis of Danon disease. However, a very low expression of a shortened LAMP-2 protein could be evidenced by Western-blot in the patient's fibroblasts. Molecular investigations identified a novel splicing mutation (IVS6 + 1delG) in the LAMP-2 gene. This case report highlights the intrafamilial variability of Danon disease phenotype. In this case, morphological examination of muscle biopsy, showing lysosomal storage myopathy, and immunohistochemistry analyses can provide key elements for orienting etiologic investigations.


Asunto(s)
Enfermedad por Depósito de Glucógeno de Tipo IIb/diagnóstico , Enfermedad por Depósito de Glucógeno de Tipo IIb/genética , Proteínas de Membrana de los Lisosomas/genética , Mutación , Adolescente , Adulto , Biopsia , Niño , Femenino , Variación Genética , Humanos , Inmunohistoquímica/métodos , Discapacidad Intelectual/genética , Proteína 2 de la Membrana Asociada a los Lisosomas , Lisosomas/patología , Masculino , Músculo Esquelético/metabolismo , Fenotipo
20.
BMC Med Genet ; 10: 84, 2009 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19728872

RESUMEN

BACKGROUND: beta-Mannosidosis (OMIM 248510) is a rare inborn lysosomal storage disorder caused by the deficient activity of beta-mannosidase, an enzyme encoded by a single gene (MANBA) located on chromosome 4q22-25. To date, only 20 cases of this autosomal recessive disorder have been described and 14 different MANBA mutations were incriminated in the disease. These are all null mutations or missense mutations that abolish beta-mannosidase activity. In this study, we characterized the molecular defect of a new case of beta-mannosidosis, presenting with a severe neurological disorder. METHODS: Genomic DNA was isolated from peripheral blood leukocytes of the patient to allow MANBA sequencing. The identified mutation was engineered by site-directed mutagenesis and the mutant protein was expressed through transient transfection in HEK293T cells. The beta-mannosidase expression and activity were respectively assessed by Western blot and fluorometric assay in both leukocytes and HEK293T cells. RESULTS: A missense disease-associated mutation, c.1922G>A (p.Arg641His), was identified for which the patient was homozygous. In contrast to previously described missense mutations, this substitution does not totally abrogate the enzyme activity but led to a residual activity of about 7% in the patient's leukocytes, 11% in lymphoblasts and 14% in plasma. Expression studies in transfected cells also resulted in 7% residual activity. CONCLUSION: Correlations between MANBA mutations, residual activity of beta-mannosidase and the severity of the ensuing neurological disorder are discussed. Whether the c.1922G>A mutation is responsible for a yet undescribed pseudodeficiency of beta-mannosidase is also discussed.


Asunto(s)
Mutación Missense , beta-Manosidasa/genética , beta-Manosidosis/genética , Western Blotting , Línea Celular , Niño , Análisis Mutacional de ADN , Demencia Vascular/complicaciones , Demencia Vascular/genética , Femenino , Expresión Génica , Humanos , Masculino , Mutagénesis Sitio-Dirigida , Linaje , Transfección , beta-Manosidasa/deficiencia , beta-Manosidosis/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...